Homology models of the tetramerization domain of six eukaryotic voltage-gated potassium channels Kv1.1-Kv1.6.
نویسندگان
چکیده
The homology models of the tetramerization (T1) domain of six eukaryotic potassium channels, Kv1.1-Kv1.6, were constructed based on the crystal structure of the Shaker T1 domain. The results of amino acid sequence alignment indicate that the T1 domains of these K+ channels are highly conserved, with the similarities varying from 77% between Shaker and Kv1.6 to 93% between Kv1.2 and Kv1.3. The homology models reveal that the T1 domains of these Kv channels exhibit similar folds as those of Shaker K+ channel. These models also show that each T1 monomer consists of three distinct layers, with N-terminal layer 1 and C-terminal layer 3 facing the cytoplasm and the membrane, respectively. Layer 2 exhibits the highest structural conservation because it is located around the central hydrophobic core. For each Kv channel, four identical subunits assemble into the homotetramer architecture around a four-fold axis through the hydrogen bonds and salt bridges formed by 15 highly conserved polar residues. The narrowest opening of the pore is formed by the four conserved residues corresponding to R115 of the Shaker T1 domain. The homology models of these Kv T1 domains provide particularly attractive targets for further structure-based studies.
منابع مشابه
A set of homology models of pore loop domain of six eukaryotic voltage-gated potassium channels Kv1.1-Kv1.6.
Homology models of the pore loop domain of six eukaryotic potassium channels, Kv1.1-Kv1.6, were generated based on the crystallographic structure of KcsA. The results of amino acid sequence alignment indicate that these Kv channels are composed of two structurally and functionally independent domains: the N-terminal 'voltage sensor' domain and the C-terminal 'pore loop' domain. The homology mod...
متن کاملComplex subunit assembly of neuronal voltage-gated K+ channels. Basis for high-affinity toxin interactions and pharmacology.
Neurons require specific patterns of K+ channel subunit expression as well as the precise coassembly of channel subunits into heterotetrameric structures for proper integration and transmission of electrical signals. In vivo subunit coassembly was investigated by studying the pharmacological profile, distribution, and subunit composition of voltage-gated Shaker family K+ (Kv1) channels in rat c...
متن کاملTwo heteromeric Kv1 potassium channels differentially regulate action potential firing.
Low-threshold voltage-gated potassium currents (I(LT)) activating close to resting membrane potentials play an important role in shaping action potential (AP) firing patterns. In the medial nucleus of the trapezoid body (MNTB), I(LT) ensures generation of single APs during each EPSP, so that the timing and pattern of AP firing is preserved on transmission across this relay synapse (calyx of Hel...
متن کاملDevelopment of Highly Selective Kv1.3-Blocking Peptides Based on the Sea Anemone Peptide ShK
ShK, from the sea anemone Stichodactyla helianthus, is a 35-residue disulfide-rich peptide that blocks the voltage-gated potassium channel Kv1.3 at ca. 10 pM and the related channel Kv1.1 at ca. 16 pM. We developed an analog of this peptide, ShK-186, which is currently in Phase 1b-2a clinical trials for the treatment of autoimmune diseases such as multiple sclerosis and rheumatoid arthritis. Wh...
متن کاملMolecular docking of the scorpion toxin Tc1 to the structural model of the voltage-gated potassium channel Kv1.1 from human Homo sapiens.
In this study, structural model of the pore loop region of the voltage-gated potassium channel Kv1.1 from human Homo sapiens was constructed based on the crystallographic structure of KcsA by structural homology. The pore loop region of Kv1.1 exhibits similar folds as that of KcsA. The structural feature of the selectivity filter of Kv1.1 is nearly identical to that of KcsA, whereas most of the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of biomolecular structure & dynamics
دوره 22 4 شماره
صفحات -
تاریخ انتشار 2005